Want to make creations as awesome as this one?

Transcript

Whiplash!!

Estatística

Gráfico de barras(quantitativa)

16

Desvio Padrão

15

Amplitude Interquartil

14

Amplitude da Amostra

13

Diz-se que a estatística, por vezes, é mentirosa!

Quartis

12

Mediana

11

Média

10

Variavel Quantitativa(Tabelas)

Variavel Quantitativa

Gráfico de Barras(qualitativa)

Gráfico circular

Variavel Qualitativa(tema e tabela)

Índice

Enquadramento Teórico(6 slides)

Objetivo de estatística

Definição de estatística

Introdução:Definição de estatistica

A estatística é o campo da matemática que relaciona factos e números em que há um conjunto de métodos que nos possibilita coletar dados e analisá-los, assim sendo possível realizar alguma interpretação deles. A estatística é dividida em duas partes: descritiva e inferencial. A estatística descritiva é caracterizada pela organização, análise e apresentação dos dados, enquanto a estatística inferencial tem como característica o estudo de uma amostra de determinada população e, com base nela, a realização de análises e a apresentação de dados.

O objetivo da Estatística é, principalmente, extrair informação dos dados para obter uma melhor compreensão das situações que representam, sendo possível transformar essa informação em conhecimento. Esta começa pela recolha de dados, sob a forma de uma amostra, ou a partir de todos os elementos da população.Posteriormente, faz-se a redução e representação desses dados utilizando as tabelas e os diferentes tipos de gráficos, sendo um dos principais objetivos desta fase, a identificação da estrutura subjacente aos dados.

Introdução:Objetivo a Estatistica

Mesmo procurando representar uma realidade, a estatística também possui falhas, sendo por vezes enganosa nos seus dados.A estatística pode ser usada também para enganar as pessoas, por exemplo nas conhecidas publicidades sobre medicamentos, produtos de limpeza ou pastas de dentes, que afirmam que uma maior parte dos profissionais as recomendam. Sendo que esta afirmação é utilizada por grande maioria das companhias, e logo não pode corresponder a uma realidade.Outro exemplo é quando, apesar de se realizar um estudo certeiro de dados de uma amostra, esta mesma não representar uma totalidade.Por exemplo, caso pretendamos realizar uma sondagem sobre qual o partido político que irá ser mais votado, deveríamos tomar como amostra um número igual de indivíduos para cada distrito ou estado do país, de forma a representar um todo.No caso de se tomar uma amostra com mais indivíduos de uma determinada localidade, é lógico que o resultado obtido representará a moda dessa localidade e não de todo o país, logo seriamos induzidos a pensar que uma moda correspondente a um determinado local corresponde à de um país todo

“Diz-se que a estatística, por vezes, é mentirosa!”

Amostra:Parte da população que é observada com o objetivo de obter informação para estudar a caraterística pretendida
População:Conjunto de unidades individuais, que podem ser pessoas, com uma ou mais caraterísticas em comum, que se pretendem analisar.Cada elemento de população é uma unidade estatística
Recenseamento:É um estudo estatístico de um Universo de pessoas, instituição ou objetos físicos com o propósito de adquirir conhecimentos observando todos os seus elementos, e fazer juízos quantitativos acerca de caraterísticas importantes desse universo
Sondagem: É um estudo científico de uma parte da população com o objetivo de melhor conhecer atitudes, hábitos e preferências da população relativamente a acontecimentos, circunstâncias e assuntos de interesse comum

Definições:

Enquadramento Teórico

As variáveis quantitativas são aquelas que podem ser medidas numericamente e expressam uma quantidade ou magnitude. Estas podem ser contínuas, quando assumem valores nos quais se incluem números que estão para além do conjunto dos números inteiros(por exemplo: números racionais), ou discretas, quando assumem apenas valores inteiros (por exemplo: 1, -5, 7). As variáveis quantitativas são importantes na análise de dados, pois permitem realizar operações matemáticas como média, desvio padrão, correlação e regressão, que possibilitam a identificação de padrões e relações entre variáveis.

As variáveis qualitativas são aquelas que não podem ser medidas numericamente, mas sim descritas ou categorizadas de acordo com as suas características. As Variáveis qualitativas podem ser de dois tipos: nominais, quando não existe uma ordem natural entre as categorias (por exemplo: profissão, sexo), ou ordinais, quando existe uma ordem natural entre as categorias (por exemplo: escolaridade, ranking). As variáveis qualitativas são importantes na análise de dados, por permitirem identificar padrões e tendências entre as diferentes categorias.

Variável quantitativa

Variável qualitativa

Na estatística podemos estudar dois tipos de Variáveis.Uma Variável Qualitativa ou uma Variável Quantitativa

Enquadramento Teórico: Tipos de Variável

Como o nome sugere, a frequência relativa acumulada é o acúmulo da frequência relativa. Para determiná-la, primeiro é necessário calcular a frequência relativa,

A Frequência relativa simples é a divisão entre um valor recolhido e o número de dados recolhidos num determinado conjunto. Como o nome sugere,esta determina a frequência que um dado tem em comparação com ao todo, devido a isto, é comum que seja representado em forma de percentagem

A frequência absoluta acumulada é a soma das frequências absolutas ao decorrer das linhas da tabela. Esta frequência é bastante útil para obter alguns dados de determinada tabela.

A frequência absoluta simples é o registo do número de repetições de uma variável estudada. Como se trata de uma contagem, é representada por números naturais, o que significa que a frequência absoluta é uma grandeza discreta.

Acumulada

Acumulada

Acumulada

Simples
Simples
Relativa
Absoluta

Frequência

Enquadramento Teórico: Frequência absoluta,relativa, simples e acumulada

Os quartís dividem a distribuição em quatro partes iguais, de modo a que cada uma das partes contenha o mesmo número de obsrevaçõesExistem 3 quartis sendo que:O 1º quartil é o valor que divide a amostra em duas partes de modo a que 25% das observações sejam inferiores ou iguais a este, o 2º quartil de modo a que 50% seja inferior ou igual e o 3º Quartil de modo a que 75% seja inferior ou igual

A mediana é o valor que divide a amostra (organizada por ordem crescente) ao meio, isto é, metade dos elementos do conjunto de dados são menores ou iguais à mediana, enquanto os restantes são superiores ou iguais

Chama-se Média de um conjunto de dados numéricos ao quociente entre a soma dos respetivos valores e o número total de dadosPode representar-se por

Chama-se moda de um conjunto de dados discretos à categoria/classe com maior frequência abosluta.Esta pode representar-se porM

Quartís

Mediana

Moda

Média

Enquadramento Teórico: Medidas de Localização

O desvio Padrão permite distinguir amostras com medidas de tendência central iguais, informando sobre a dispersão dos dados em relação à média. O desvio padrão toma sempre valores maiores ou iguais a zero, e a distribuição é tanto mais dispersa quanto maior for o desvio padrão

A amplitude interquartil é a diferença entre o 3º e o 1º quartis

A amplitude de uma amostra é a diferença entre o valor máximo e o valor mínimo recolhidos

Desvio Padrão

Amplitude da amostra

Amplitude Interquartil

Enquadramento Teórico: Medidas de Localização

Neves Maria Augusta Ferreira;GuerreiroLuís;Leite António;Silva Jorge nuno.Matemática A 10º Ano.1ªEdição.Porto Editora 2019

Longo Elisabete;Branco Isabel.Macs Matemática aplicada às Ciências Sociais- 10º Ano. 1º Edição.Texto 2019

Neves Maria Augusta Ferreira;Guerreiro Luís;Silva António Pinto.Máximo Parte 2 matemática A 10º Ano.1ªEdição. Porto Editora 2022

https://sweet.ua.pt/pedrocruz/bioestatistica/ed-dist-interquartil-amostral.html#gsc.tab=0

https://www.maxwell.vrac.puc-rio.br/33767/dispersao2.html

https://www.preparaenem.com/matematica/frequencia-relativa.htm

https://mundoeducacao.uol.com.br/matematica/frequencia-relativa.htm

https://mundoeducacao.uol.com.br/matematica/frequencia-absoluta.htm

https://www.todamateria.com.br/frequencia-absoluta/

http://leg.ufpr.br/~silvia/CE055/node8.html

https://pt.linkedin.com/pulse/tipos-de-vari%C3%A1veis-usiara-britto

https://www.alea.pt/index.php?option=com_content&view=article&id=859&Itemid=1774&lang=pt

https://brasilescola.uol.com.br/matematica/estatistica-2.htm

Enquadramento Teórico: Bibliografía e Webgrafía

Variavel Qualitativa

No nosso caso decidimos estudar o género musical favorito das pessoas da Turma, Foram escolhidos no total 6 géneros.O Pop, o Rap, o Metal, o Funk, a Música Eletrónica e o Jazz.De forma a concretizar o estudo foi realizado um questionário à turma

Género Musical Preferido

No final da recolha de dados, foi possível construir a seguinte tabela de frequência:

Variavel Qualitativa

Através da análise desta tabela podemos observar que:-A variável è Bimodal, ou seja, existem duas modas. Sendo estas O Pop e o Funk-Os géneros menos comuns na turma são o Rap, a música eletrónica e o Jazz

Género Musical Preferido

Variavel Qualitativa

23.5%
5.9%
5.9%
5.9%
29.4%
29.4%

Com o auxílio da mesma Tabela também é possível construir um Gráfico circular

Jazz- 1 pessoaJazz

Elétrónica-1 pessoa

Funk-5 pessoas

Rap

Metal- 4 pessoas

Rap- 1 pessoa

Pop- 5 pessoas

Write a great title her

Jazz

Elétronica

Funk

Metal

Pop

Gráfico Circular

Género de música Favorito

Neste gráfico podemos observar de uma forma mais simples qual a moda da variável

Da mesma forma também é possível construir um gráfico de barras

Gráfico de Barras

Após a análise da pauta publicada pela escola foi possível recolher as seguintes informações relacionadas com a variável em estudo: Notas(em valores): -9 -11 -16 -11 -9 -8 -14 -11 -10 -10 -10 -13 -18 -9 -16 -17

No que se refere a variável quantitativa optamos por estudar as médias do 1ro período obtidas por cada aluno da turma na disciplina de Fisico-Química

Variavel Quantitativa

Médias de cada aluno da Turma na disciplina de Fisico-Química

Através destes dados é possível criar uma tabela de frequência simples e uma tabela de frequência acumulada:

Tabelas de Frequência:Tabela de frequência simples

Médias de cada aluno da Turma na disciplina de Fisico-Química

Tabelas de Frequência:Tabela de frequência acumulada

-Através da análise da tabela podemos notar que esta variável é plurimodal, ou seja, possui várias modas ,uma vez que, existem vários valores que se repetem em maior quantidade com a mesma frequência absoluta.Ou por outras palavras, nenhum valor possui uma maior frequência absoluta, mas sim vários

Médias de cada aluno da Turma na disciplina de Fisico-Química

Análise das tabelas

i=1

Ou

Neste caso, a média é um bom identificador da zona de maior densidade,uma vez que existe uma zona de densidade mais elevada junto à média

12

16

9 + 16 + 9 + 14 + 10 + 10 + 13 + 18 + 9 + 16 + 17 + 11 + 11 + 8 + 11 + 10

Neste caso a media é dada por:

1 2 3 4 n
X + X + X + X +...... X

Primeiro começaremos por determinar a média dos resultados de modo a determinar qual a média da turma na disciplina em estudo.A média de um determinado conjunto de dados é dado pelo quociente entre a soma dos valores desse conjunto e o número total de dados, podendo esta poder representada por e traduzida pela equação:

Estudo dos dados: Média

Neste caso a mediana é 11.Esta representa o valor central do conjunto de dados, representando também o segundo quartil(2ºQ)Esta divide os valores de modo a que 50% dos números são superiores e 50% são inferiores a essa mediana

=11

11 +11

8 9 9 9 10 10 10 11 11 11 13 14 16 16 17 18

Para posteriormente escolher aquele que fica no meio (ou, se houver dois números no meio, calcular a média desses dois números).

A mediana de um conjunto de dados é o número que divide os dados exatamente ao meio. Para determinar o valor da mediana, é necessário ordenar o conjunto de dados.

Estudo dos dados: Mediana

O terceiro quartil corresponde a mediana do subconjunto de ordem superior à mediana da amostra Neste caso 3ºQ=15

O 2º quartil corresponde a mediana da amostra, ou seja e o dado que ocupa a posição central da sequência ordenada da amostraComo já vimos, neste caso corresponde a 11

2ºQ

O primeiro quartil corresponde à mediana do subconjunto de dados de ordem inferior a mediana de toda a amostraNeste caso 1ºQ =9.5 (provem da média dos dois números que se encontram a meio do subconjunto

3ºQ

1ºQ

Após ter sido determinada a mediana e, logo, 2ndo quartil, é possável distinguir também um 1ro e 3ro quartil(1ºQ e 3ºQ respetivamente)

8 9 9 9 10 10 10 11 11 11 13 14 16 16 17 18

Estudo dos dados: Quartís

Assim, podemos afirmar que a amplitude de esta amostra é 10, ou seja, que entre o aluno com a nota mais baixa e o aluno com a nota mais alta existe uma diferença de 10 valores

18-8 = 10

A amplitude da amostra é dada pelo resultado da subtração do valor mais alto registado com o mais baixo, neste caso estes valores correspondem a 18 e 8 respetivamente

8 9 9 9 10 10 10 11 11 11 13 14 16 16 17 18

Estudo dos dados: Amplitude da amostra

Neste intervalo entre o 1º e 3º quartil encontram-se 50% dos dados recolhidos

15-9.5=5.5

3ºQ=15

1ºQ =9.5

3ºQ

1ºQ

8 9 9 9 10 10 10 11 11 11 13 14 16 16 17 18

A amplitude interquartil corresponde ao resultado da subtração entre a mediana do 3ro quartil e a mediana do 1ro quartil, neste caso estas correspondem a 15 e 9.5 respetivamente

Estudo dos dados: Amplitude interquartil

Ou seja, os dados estão bastante dispersos em relação à média

16-1

156

Neste caso, fazendo uso dos dados recolhidos e da média determinadaSSx=(8-12) + 3(9-12) + 3(10-12) + 3(11-12) + (13-12) + (14-12) + 2(16-12) + (17-12) + (18-12) = 156Logo Sx= = 3.2249 Assim o desvio Padrão deste conjunto de dados é 3.2249

(x - x )

i=1

n-1

Sx =

Ou

SS

n-1

Sx =

O desvio padrão de um conjunto de dados é dado pela expressão:

Estudo dos dados: Desvio Padrão

Notas dos alunos da turma na disciplina de Fisico-Química

Por último construimos um Gráfico de barras a partir dos dados recolhidos

Estudo dos dados: Gráfico de barras

Para construir um diagrama de dispersão primeiros deveremos representar pontos num gráfico cartesiano, pontos cujas ordenadas representarão as notas obtidas a disciplina de Matemática A e cujas abscisas representem as notas da disciplina de PortuguêsAssim as notas da disciplina de Portugês irão constituir a variável resposta, enquanto as notas da disciplina de Matemática A irão constituir a variável explicativa.No final foi possivel construir este Diagrama de dispersão

Abordamento gráfico e intuitivo de distribuições bidimensionais: Diagrama de Diaspersão

Pelos dados fornecidos pelo diagrama é possivel determinar a equação da reta de regressão entre as variáveis sendo esta:y = 1.11502x -3.5Também é possivel determinar o centro de gravidade da nuvem de pontos, sendo que as suas coordenadas correspondem ás medias de cada uma das variaveis, sendo a abscisa correspondente a média das notas de Português e a ordenada a média das notas de Matemática A .Ou seja ( , )Neste caso o centro de gravidade corresponde a ( 12.5 , 10.47)

Abordamento gráfico e intuitivo de distribuições bidimensionais: Centro de Gravidade da nuvem de pontos e equação da reta de regressão

Abordamento gráfico e intuitivo de distribuições bidimensionais: Coeficiente de correlação linear

Marcos Estrela

“I choose to live, not just exist"-James Hetfield

Luís Batalha

Catarina Halimon

Rodrigo Axel

Luis Tamayo

"I`m not gonna say its all done, ´cause it ain´t ever all done."-Dimebag Darrel

“Get Out There and Play”-Marty Friedman

“It's not how big your pencil is; it's how you write your name.”-Dave Mustaine

"We should Kill `em All"-Cliff Burton

As ameaças a humanidade(autores do trabalho)

Whiplash!!!

Obrigado!