Diapositiva cuerpo rigido JLVC
Victoriano Coello Luis
Created on May 28, 2023
More creations to inspire you
ALICE'S WONDERLAND BOOK REGISTRY
Presentation
BASIL RESTAURANT PRESENTATION
Presentation
AC/DC
Presentation
THE MESOZOIC ERA
Presentation
ALL THE THINGS
Presentation
ASTL
Presentation
ENGLISH IRREGULAR VERBS
Presentation
Transcript
Empezar
GONZALEZ PEREZ YADIRAVICTORIANO COELLO JOSE LUIS5MV15
Dinamica del cuerpo rigido
Observaremos cuerpos rigidos que se mueven bajo restricciones determinadas
01
Movimiento Plano Restringido
Relacion
Ecuacion
Pricipio d'Alembert
Aplicaciones
Cinematica vs Cin.
Tipos de rests.
Introduccion
Índice
Las restricciones pueden ser causadas por fuerzas externas, condiciones físicas o limitaciones estructurales
Importante en áreas, como la mecánica, la astronomía y la ingeniería
A continuacion tipos de restricciones:
Restriccion al girar alrededor de un eje fijo. Un ejemplo es el movimiento de un objeto en un sistema de poleas o ruedas dentadas
01
Restricción y conexión mediante pasadores a collarines. Un ejemplo es el movimiento de una puerta que se conecta al marco mediante bisagras
03
Restringido a rodar sobre una superficie dada. Un ejemplo es el movimiento de una rueda que rueda sobre una superficie plana.
02
Se refiere al estudio de los procesos y fenómenos que implican la interacción de partículas y la transformación de la energía cinética. Se centra en el análisis de las colisiones
Analisis Cinetico
Es el estudio de movimientos de los objetos sin tener en cuenta las causas que los generan. Se centra en describir y medir variables como la posición, velocidad y aceleración de un objeto en función del tiempo.
Analisis Cinematico
vs
Movimiento de planetas y satélites
Movimiento de sistemas pendulares
Movimiento de proyectiles
Aplicaciones
Este principio establece
- Un sistema en equilibrio
- La suma de las fuerzas aplicadas sobre un cuerpo es igual a cero.
Principio d'Alembert
Cualquier desplazamiento virtual (compatible con las ligaduras) de la partícula i-ésima.
Momento lineal o cantidad de movimiento de la partícula i-ésima.
Fuerza aplicada resultante sobre la partícula i-ésima.
Formula
+ ifo
Principio de D'Alembert nos permite analizar sistemas en equilibrio considerando las fuerzas inerciales como fuerzas reales y aplicar la segunda Ley de Newton (F = ma) en un sistema en reposo.Esto facilita el estudio de problemas de estática y equilibrio en la mecánica.
Definicion
02
Principio del trabajo y la energía para un cuerpo rígido
Cuando un objeto se encuentra restringido a moverse únicamente en un plano el principio de D'Alembert se aplica considerando las fuerzas involucradas en el plano de movimiento.En este caso, se utiliza el análisis de las ecuaciones de restricción y las ecuaciones de movimiento específicas del plano restringido.
Relacion con movimiento de plano restringido
Relacion
Ecuacion
Aplicacion
Energia Cinetica T.
Energia Cinetica
Principio Trabajo y E.
Introduccion
Índice
Se supondrá que el cuerporígido está compuesto por un gran número n de partículas de masa. Representado por este simbolo:
El trabajo de fuerzas y la energía cinética son cantidades escalares.
Trabajo de todas las fuerzas que actúan sobre las diversas partículas del cuerpo
+ info
valores inicial y final de la energía cinética total de las partículas que forman al cuerpo rígido
Principio del trabajo y la energia
Se refiere a la suma de las energías cinéticas individuales de todas las partículas. En un sistema compuesto por múltiples objetos en movimiento, la energía cinética total se calcula sumando las energías cinéticas de cada objeto.
Energia Cinetica Total
Forma de energía asociada al movimiento de un objeto. Se define como la energía que posee un objeto debido a su velocidad. Cuanto más rápido se mueve un objeto, mayor es su energía cinética.
Energia Cinetica
+ info
La energía cinética total es una medida de la cantidad total de energía asociada al movimiento de todas las partículas en el sistema. Se obtiene al sumar cantidades escalares positivas, y ella misma es una cantidad escalar positiva. Después se verá cómo puede determinarse T para diversos tipos de movimiento de un cuerpo rígido.
Energia Cinetica total
El principio del trabajo y la energía se utiliza para analizar el movimiento y el equilibrio de mecanismos y máquinas compuestas por cuerpos rígidos.
Cálculo de esfuerzos y deformaciones
Al utilizar el principio del trabajo y la energía, es posible analizar y diseñar máquinas y estructuras, como puentes, grúas o vehículos, teniendo en cuenta la distribución y transferencia de energía en el sistema.
Diseño de máquinas y estructuras:
03
TRABAJO DE LAS FUERZAS QUE ACTÚAN SOBRE UN CUERPO RÍGIDO
Tambien podemos usar la variante donde:F = Magnitud de la fuerzaα = Angulo que forma con la dirección de movimiento de su punto de aplicación A S = Variable de integración que mide la distancia recorrida por A a lo largo de su trayectoria.
Recordemos que el trabajo de una fuerza F durante un desplazamiento de su punto de aplicación desde A1 hasta A2 es representada por la ecuacion:
Ecuaciones
El trabajo de un par de momento M que actúa sobre un cuerpo rígido es representada por
Par del momento
Lo anterior nos deja en claro que el producto Fr es igual a la magnitud M del momento del par.
Calcular el trabajo de fuerzas externas
Considere las dos fuerzas F y -F que forman un par de momento M y que actúan sobre un cuerpo rígido en la siguiente imagen
01
En la primera parte del movimiento, el trabajo de F es igual en magnitud y opuesto en signo al trabajo de -F y su suma es cero.
03
En el segundo caso A´permanece fija mientras que B´ se mueve hacia B´´ a lo largo de un des- plazamiento dr2 de magnitud ds2 = r dθ .
02
Ejemplo tres
Ejemplo dos
Ejemplo uno
Fuerzas sin trabajo
Son fuerzas aplicadas en puntos fijos que actúan en una dirección perpendicular al desplazamiento de su punto de aplicación
La reacción en un pasador sin fricción cuando el cuerpo soportado gira alrededor del pasador
Momento M constante
La ecuacion se reduce, viendose de esta manera
La reacción en una superficie sin fricción cuando el cuerpo en contacto se mueve a lo largo de la superficie
el peso del cuerpo cuando su centro de gravedad se mueve horizontalmente
Ejemplos graficos
04
Energía cinética y potencia de un cuerpo rígido
+ info
Para esta exposicion consideramos
- Cuerpo rigido de masa m
- Vi = Velocidad absoluta
- Pi = Partiula del cuerpo
Explicacion en movimiento plano
Aqui ya se reemplazo dentro de la Vi´2 por la velocidad angular, recordando la imagen de la diapositiva anterior.puesto que la suma representa el momento de inercia I del cuerpo alrededor del eje que pasa por G.
Formula numero dos
El movimiento de un solido rigido puede ser muy complejo, sin embargo lo analizaremos por partes. La energia cinetica del sistema de particulas que forman al cuerpo rigido puede escribirse en la forma.
Formula Energia Cinetica
Tres
Dos
Uno
La energía cinética puede expresarse como la velocidad vi de la partícula Pi es igual al producto ri (w)
Y la distancia (ri) de Pi desde el eje fijo y la magnitud (w)
Rotacion NO Centroidal
Se usa para expresar la energía cinética de un cuerpo rígido que gira con una velocidad angular (w) alrededor de un eje fijo que pasa por O (origen).
La velocidad angular del cuerpo en el instante considerado se escribe:
Los resultados obtenidos no están limitados al movimiento de placas planas o al de cuerpos que son simétricos con respecto al plano de referencia.Es posible aplicarlos al estudio del movimiento plano de cualquier cuerpo rígido, sin que importe su forma.
Explicacion en movimiento plano
Se utilizará en la solución de todos los problemas resueltos.
Sólo se aplica en casos que implican rotación no centroidal.
Se aplica a cualquier movimiento plano
Resumen de formulas
05
Principio de impulso y cantidad de movimiento plano de un cuerpo rigido
+ info
Se aplicará ahora al análisis del movimiento plano de cuerpos rígidos y de sistemas de cuerpos rígidos
Aplicacion del principio de impulso
- El sistema de las cantidades de movimiento es equivalente a un vector mv.
- Conectado con el centro de masa G del cuerpo y un par Iw.
Condiciones placa rigida o Cuerpo rigido simetrico
- El vector mv con la traslación del cuerpo con G y representa la cantidad de movimiento lineal del cuerpo.
- El par Iw corresponde a la rotación del cuerpo alrededor de G
- Representa la cantidad de movimiento angular del cuerpo alrededor de un eje que pasa por G. 568
Condiciones placa rigida o Cuerpo rigido simetrico
- Tres diagramas que representan al sistema de las cantidades de movimiento iniciales del cuerpo.
- Los impulsos de las fuerzas externas que actúan sobre el cuerpo y el sistema de las cantidades de movimiento finales del cuerpo.
Condiciones placa rigida o Cuerpo rigido simetrico
Al sumar e igualar de manera respectiva las componentes x, las componentes y y los momentos alrededor de cualquier punto dado de los vectores.
Si no intervienen más de tres incógnitas, es posible aplicar el principio del impulso
Beer, F. P., & Johnston, E. R. (2008). Mecánica vectorial para ingenieros, Dinámica (Edición 2008). Lugar de publicación: Editorial.Hibbeler, R. C. (2010). Ingeniería Mecánica: Dinámica (Edición 2010). Lugar de publicación: Editorial.
Referencias bibliograficas
¡Gracias!