Spirale Problèmes multiplicatifs parties-toutsimple 64
christophe.lagouarde1
Created on February 11, 2022
More creations to inspire you
THE POETRY HIVE LOVES YOU!
Interactive Image
WHAT IS PRIDE?
Interactive Image
HOW TO BE AN ALLY TO TRANSGENDER AND NONBINARY PEOPLE
Interactive Image
THE STONEWALL RIOTS
Interactive Image
THE LEGALIZATION OF GAY MARRIAGE IN THE US
Interactive Image
HISTORY OF THE LGBTQ+ PRIDE FLAG
Interactive Image
AN INTRODUCTION TO LGBTQ+ TERMS
Interactive Image
Transcript
ACTIVITÉS SPÉCIFIQUES à partir de problèmes basiques de la même catégorie, dans des contextes différents, en variant les nombres mis en jeu (entiers, décimaux, grandeurs et mesures )
PROBLEMES BASIQUES DE REFERENCE « Élaboration d’un outil référent pour les problèmes de proportionnalité simple » (Problèmes des équipes et des pirates)
Résoudre les problèmes S1
Catégoriser selon la place de l’inconnue : le tout, la valeur d’une part, le nombre du part S2
Schématiser les problèmes : Construction des référents avec le schéma en barres S4 et S5
Catégoriser des problèmes S3
Schématiser des problèmes S6
Associer Schémas/Énoncés
Résoudre des problèmes S7
PROBLÈMES ATYPIQUES (Problèmes pour chercher)
Spirale Problèmes de proportionnalité simple
Groupe MATHS 64
PROBLÈMES COMPLEXES(Problèmes à plusieurs étapes)
ACTIVITÉS RITUALISÉES
Créer des problèmes ( à partir d’une catégorie donnée , à partir d’un schéma donné , ..) Transformer des problèmes en faisant varier la place de l’inconnue
(Problèmes multiplicatifs de parties-tout)
- Calcul mental
- Problèmes ritualisés - Catégoriser des problèmes - Schématiser des problèmes
Cliquez sur le logo ci-dessus pour télécharger les documents de la séquence
Lien vers le M@gistère "Une démarche spiralaire pour enseigner la résolution de problèmes arithmétiques au cycle 3"
Séance 1: Résoudre les problèmes
Des données numériques simplifiées pour alléger la charge cognitive de l’élève
Les élèves résolvent 6 ou 3 problèmes (A,D,E ou B,C,F) en fonction de leurs compétences. Au cours de la résolution, ils repèrent déjà des liens entre les problèmes.
Séance 2: Catégoriser
Dans cette séance, il est demandé aux élèves de cycle 3 de classer 6 problèmes (résolus au préalable en séance 1) et de nommer les catégories de leur classement. L’objectif annoncé aux élèves est de trouver un classement qui soit utile pour la résolution d’autres problèmes, qui les aide à les résoudre plus facilement.Plusieurs classements sont proposés. A l’issue de la mise en commun, le choix est fait de catégoriser selon ce que l’on cherche. Cliquez sur le document pour obtenir le classement final
Le fait de travailler à partir de problèmes résolus allège la charge cognitive de l'élève et lui permet de se concentrer sur l'activité de classement
Sous-titre
Cliquez sur l'image ci-dessus pour obtenir le classement choisi
Séance 3: Catégoriser de nouveaux problèmes (Activité spécifique)
A la fin de la séance 2, les élèves ont fait le choix d’une catégorisation « Je cherche le tout. Je cherche le nombre de contenants. Je cherche le contenu du contenant ». Dans la séance 3, l’enseignante propose aux élèves de classer 6 nouveaux problèmes en utilisant leur catégorisation.
La catégorisation de nouveaux problèmes permet de définir une catégorisation généralisable à l’ensemble des énoncés : La recherche de la valeur d’une part, la recherche du nombre de parts et la recherche du tout
Cliquez sur l'image ci-dessus pour obtenir le classement choisi
Séances 4 et 5: Schématiser les problèmes : Construction des référents avec le schéma en barres
Dans ces deux séances, il est demandé aux élèves de trouver un schéma pour chaque catégorie. L’objectif annoncé aux élèves est de trouver un schéma qui aidera à résoudre tous les problèmes de la catégorie.
Traiter les catégories de la plus simple à la plus complexe. Tout d’abord, les élèves cherchent individuellement un schéma pour la catégorie « Recherche du tout » puis une mise en commun des schémas proposés permet d’élaborer un schéma collectif.
Ensuite, ces phases se répètent pour la catégorie « Recherche de la valeur d’une part » et enfin pour la catégorie « Recherche du nombre de parts
Cliquez sur l'image ci-dessus pour obtenir les référents construits
Séance 6: Schématiser de nouveaux problèmes (Activité spécifique)
Dans cette séance, les élèves ont à schématiser les problèmes catégorisés en séance 3. A cet effet, ils disposent de l’outil d’aide.
Le fait que l’élève n’ait pas à résoudre les problèmes allège sa charge cognitive et lui permet de se concentrer sur la schématisation.
Séance 7: Résolution de nouveaux problèmes ( Activité spécifique)
Dans cette séance, les élèves ont à résoudre de nouveaux problèmes multiplicatifs de parties-toutA cet effet, ils disposent de l’outil d’aide qui a été élaboré au fil de la séquence.
Laisser un temps suffisant de résolution individuellePermettre l’usage de la calculatrice pour alléger la charge cognitiveVerbaliser la démarche d’analogie avec les élèves
Activité spécifique: Association Schémas/Énoncés
Les élèves ont pour consigne d’associer des énoncés de problèmes et les schémas en barre correspondants. Ils doivent se mettre d’accord sur leurs choix avant de les valider.
Cette activité est support de verbalisations, d’échanges conduits et nourris par l’enseignant.
Cliquez sur l'image ci-dessus pour accéder à l'activité spécifique
Activité spécifique : association schéma et énoncés
Activité ritualisée: le CALCUL MENTAL
D'après les travaux de Butlen et Pézard (2007) l'entraînement au calcul mental favorise une prise de sens (compréhension de la situation) et contribue à accélérer l'automatisme de la reconnaissance du modèle (opération en jeu) dans la résolution de problèmes.
Cliquez sur l'image ci-dessus pour visionner un exemple en vidéo
Télécharger les documents de la séquence "Les MURS"
Aux conditions de:- pratiquer régulièrement le calcul mental.- Faire expliciter aux élèves leurs méthodes de calcul.
Des référents de calculs du champ multiplicatif peuvent être construits avec les élèves. Ces référents prennent la forme de MURS affichés en classe et présents dans les cahiers de leçon. Ils permettent chez les élèves la construction d'images mentales en lien avec la schématisation des problèmes de proportionnalité simple (recherche du nombre de parts, du tout ou de la valeur d'une part).
PROBLÈMES COMPLEXES: Problèmes à plusieurs étapes
Le cœur de l’activité de résolution de problèmes au cours moyen est l’apprentissage de la résolution de problèmes à plusieurs étapes.
- L'élève apprend par l'action en manipulant les réglettes: mode énactif (Bruner)- L'élève utilise ses connaissances sur les fractions: un sixième, c'est quand l'unité est partagée en 6 parts égales.
- L'élève utilise ses connaissances en calcul mental construites à partir du MUR. - L'élève fait un schéma et des calculs: modes iconique et symbolique (Bruner)
Encourager l'élève à dire ce qu'il fait, ce qu'il voit: sa compréhension s'approfondit.
PROBLÈMES COMPLEXES: Problèmes à plusieurs étapes
Le cœur de l’activité de résolution de problèmes au cours moyen est l’apprentissage de la résolution de problèmes à plusieurs étapes.
- L'élève apprend par l'action en manipulant les réglettes: mode énactif (Bruner)- L'élève utilise ses connaissances sur les fractions: un sixième, c'est quand l'unité est partagée en 6 parts égales.
- L'élève utilise ses connaissances en calcul mental construites à partir du MUR. - L'élève fait un schéma et des calculs: modes iconique et symbolique (Bruner)
Encourager l'élève à dire ce qu'il fait, ce qu'il voit: sa compréhension s'approfondit.
PROBLÈMES ATYPIQUES : Problèmes pour chercher
LES 4 SAISONS des maths
Pour acquérir:- des notions mathématiques- des compétences transversales comme l’autonomie, la prise de décisions, la créativité- des stratégies et des types de raisonnement à réinvestir dans d’autres problèmes atypiques
Cliquez sur l'image ci-dessus pour accéder à toutes les énigmes