Want to make creations as awesome as this one?

Transcript

Les causeries mathématiques

Compréhension conceptuelle

Climat de classe

Source: Référentiel d'intervention en mathématique (MEQ)

Le déroulement d'une causerie mathématique

Les types de causeries

Ressources supplémentaires

Idées directrices des causeries

Outil de planification

Des conseils pour réussir ses causeries

Fluidité

Flexibilité

Création en lien avec un projet sur la résolution de problèmepar un groupe de conseillers pédagogiques en mathématique au primaire et au secondaire

Capsule vidéo explicative d'une causerie

Fluidité

Compréhension conceptuelle

Retour

Flexibilité

L'enseignant invite les élèves à trouver plus d'une façon de résoudre le problème.

Source: Référentiel d'intervention en mathématique (MEQ)

Pendant que les élèves réfléchissent à résoudre le problème à l'aide de différentes approches, ils améliorent leur compréhension conceptuelle!

Fluidité

Compréhension conceptuelle

Le "quoi" et le "pourquoi" d'un concept; Liens entre les éléments d'un concept; Liens entre les concepts.

Retour

Flexibilité

Source: Référentiel d'intervention en mathématique (MEQ)

Déterminer la stratégie la plus efficace permet à l'élève d'améliorer sa fluidité.

Fluidité

Connaissance, mémorisation et automatisations de faits et de procédures.

Compréhension conceptuelle

Retour

Flexibilité

Source: Référentiel d'intervention en mathématique (MEQ)

Exemple:Connaître ses tables de multiplicationReconnaître une procédure à utiliserFractions équivalentesAddition de nombres décimauxAddition de pourcentagesAppliquer la procédure correctementAutomatisation de la procédure

Tous les élèves ont des idées mathématiques valant la peine d'être écoutées

Le travail de l'enseignant est d'aider les élèves à apprendre à développer et exprimer leurs idées clairement.Les élèves ont besoin d'opportunités pour réfléchir et apprendre à résoudre des problèmes de la façon qui fait le plus de sens pour eux. Lors des causeries mathématiques, les élèves sont amenés à écouter activement les stratégies des autres élèves. C'est lorsqu'ils font des liens entre les différentes stratégies qu'ils approfondiront leur compréhension du concept en jeu.

Les stratégies utilisées par les élèves, efficaces ou non, nous donne accès à leur compréhension

Un des buts des causeries est de faire ressortir des stratégies efficaces. Par contre, aucune stratégie n'est efficace si elle n'est pas comprise par l'élève. Les causeries ne devraient pas être animées de façon à amener les élèves à penser comme l'enseignant ou de comprendre et d'appliquer la "meilleure" stratégie. Elles servent plutôt à encourager les élèves à réfléchir d'une façon qui fait du sens pour eux.On peut mettre en lumière des stratégies plus efficaces utilisées par certains élèves lors de la discussion, mais il est important de le faire de manière à ne pas envoyer le message que c'est la stratégie que les élèves devraient systématiquement utiliser.

Encourager la persévérance et questionner les élèves plutôt que de leur fournir les étapes à suivre

Lorsqu'un élève éprouve de la difficulté, il est important de ne pas le "sauver" trop rapidement en lui fournissant la démarche à suivre. C'est à travers les embûches que l'élève apprendra à persévérer.Aider les élèves ne signifie pas de leur fournir clairement les étapes à suivre. Les élèves s'attendent d'ailleurs à ce que l'enseignant leur explique exactement comment procéder avant de débuter un problème. Ce n'est malheureusement pas de cette façon qu'ils développeront une compréhension approfondie des concepts ou apprendront à persévérer devant un problème non familier.

La compréhension conceptuelle se développe au fil du temps à travers des problèmes variés

Les élèves, à travers leurs années d'expérience en classe de mathématiques, ont souvent tendance à penser que de faire des mathématiques, c'est de mémoriser et d'appliquer des formules.Il est possible qu'au départ, les élèves aient besoin de temps pour tester de nouvelles idées mathématiques et être assez confiant pour les partager au groupe. Il est aussi possible que les élèves aient besoin de temps pour voir la valeur des causeries mathématiques. Leurs croyances à ce qu'est leur rôle d'élève en classe de mathématique sont chamboulées lors des causeries mathématiques. Il faut alors faire preuve de patience et croire au potentiel des causeries lors des périodes plus décourageantes!

Les erreurs donnent l'occasion d'explorer des idées qui autrement, ne seraient pas envisagées

Les erreurs font partie du processus normal d'apprentissage.Explorer différentes erreurs ensemble et prendre le temps de les comprendre est une activité mathématique riche qui devrait régulièrement faire parti de la planification de l'enseignant.La normalisation de l'erreur contribue aussi au développement de la mentalité de croissance.

C'est à travers un questionnement réfléchi qu'on cherche à comprendre les réflexions des élèves

Les questions de l'enseignant doivent servir à ouvrir le dialogueplutôt qu'à diriger les élèves vers une procédure particulière. Les questions doivent démontrer une curiosité envers la façon dont l'élève réfléchi et amener l'élève à articuler et exprimer sa pensée de façon à ce que les autres élèves puissent le comprendre. "Pourquoi as-tu diviser par 10?""À quoi pensais-tu lorsque tu as fais...""Peux-tu convaincre le reste de la classe.."Les questions doivent focusser sur le raisonnement de l'élève et non celui de l'enseignant. C'est alors important pour l'enseignant de bien écouter l'élève et de ne pas l'interrompre pour mettre des mots dans sa bouche.

Encourager et valoriser la diversité des idées et des stratégies

Les élèves doivent travailler leur flexibilité et leur efficacité et être amenés à comprendre les différentes façons de résoudre un même problème. L'enseignant doit alors valoriser le partage de différentes stratégies et encourager l'écoute active des élèves. Il doit aussi faire ressortir des liens entre les différentes stratégies afin de permettre aux élèves d'approfondir leur compréhension.Le travail de l'enseignant n'est pas d'enseigner ce qu'il voit, mais de leur enseigner à voir.

Les discussions entre élèves sont importantes et doivent être valorisées

Encourager les élèves à expliquer leurs pensées de façon conceptuelle plutôt que procédurale

Il faut aller plus loin que les étapes d'une démarche pour arriver à la solution. Nous devons amener les élèves à comprendre et être en mesure d'expliquer pourquoi leur procédure fait du sens. Leur demander le pourquoide leur démarche aidera les élèves à approfondir leur compréhension du problème.Éventuellement, les élèves pourront se demander ces questions entre eux. "Pourquoi as-tu fais ceci? Peux tu m'expliquer?".Au départ, il est normal que les élèves soient déstabilisés d'avoir à expliquer leur raisonnement si ils n'ont jamais eu à le faire. Il faut alors ne pas trop pousser les élèves à expliquer pourquoi lorsqu'on se rend compte qu'ils répètent seulement ce qu'ils ont mémorisé. Si les élèves utilisent, par exemple, un algorithme sans être en mesure d'expliquer pourquoi, c'est à l'enseignant de donner du sens à ces procédures et d'expliciter différentes stratégies efficaces pour calculer mentalement.

Idées directrices des causeries mathématiques

Source: Making Number Talks Matter (par Cathy Humphreys et Ruth Parker)

Retour

Être à l'aise avec le temps d'attente

Les élèves sont habitués d'attendre pour obtenir les explications de l'enseignant lorsqu'ils sont devant un problème non familier. Il faut alors être plus patient qu'eux!!À chaque fois que vous demandez la participation des élèves pour répondre à une question, attendez (au minimum10 secondes, tout dépendant de la question) pour leur donner le temps de réfléchir et de prendre leur courage à deux mains pour répondre. Si les moments de silence sont plus longs, c'est possible que cela cause un moment d'inconfort et que certains rient même de la situation. Et c'est correct! Cela pourra justement les aider à se lancer!!

Apprendre à écouter

Un des buts des causeries est de faire ressortir des stratégies efficaces. Par contre, aucune stratégie n'est efficace si elle n'est pas comprise par l'élève. Les causeries ne devraient pas être animées de façon à amener les élèves à penser comme l'enseignant ou de comprendre la "meilleure" stratégie. Elles servent plutôt à encourager les élèves à réfléchir d'une façon qui fait du sens pour eux.On peut mettre en lumière des stratégies plus efficaces utilisées par certains élèves lors de la discussion, mais il est important de le faire de manière à ne pas envoyer le message que c'est LA stratégie que les élèves devraient systématiquement utiliser.

Prendre note du raisonnement des élèves au tableau

Représenter le raisonnement d'un élève au tableau permet aux autres élèves de mieux comprendre la stratégie utilisée. Cela donne aussi l'opportunité à l'enseignant de modéliser l'utilisation de différentes notations et de poser des questions à l'élève ou au reste du groupe. Il n'y a pas de "bonne manière" de représenter le travail de l'élève. Il faut seulement s'assurer de représenter le raisonnement de l'élève le plus clairement possible .

Amener les élèves à interagir entre eux sans sans le soutien de l'enseignant

L'enseignant pourrait tenter de se positionner sur le côté ou à l'arrière de la classe pour éviter d'être le centre d'attention en tout temps lors de la causerie. Lorsqu'un élève partage sa stratégie, laisser le temps aux autres élèves pour réfléchir et prendre la parole. Si une main se lève, demander à l'élève qui vient de partager de nommer l'élève qui a la main levé pour lui laisser la parole.

Proposer des causeries mathématiques régulièrement

Les élèves développeront leurs idées mathématiques plus rapidement si les causeries font partie de la routine de classe. Il est aussi idéal de planifier des causeries qui permettront aux élèves de réinvestir une stratégie apprise récemment dans une nouvelle causerie.

"Pousser" graduellement pour obtenir des explications conceptuelles

Une des idées directrices des causeries est de poser des questions du type "pourquoi" afin de permettre aux élèves d'approfondir leur compréhension conceptuelle.Il est parfois possible de rendre ce questionnement contre-productif, surtout lors des premières causeries, par manque d'expérience des élèves à devoir expliquer le pourquoi. Le fait d'être questionné de cette façon peut aussi être intimidant au départ et amener certain élèves à se refermer et à cesser de participer. Il faut alors y aller graduellement. Débuter avec des cartes à points est une bonne porte d'entrée aux causeries pour favoriser le partage de raisonnement. Ensuite, lors de causeries impliquant un calcul ou un raisonnement plus élaboré, il est suffisant de poser une ou deux questions de type "pourquoi". Au fur et à mesure que "l'explication du pourquoi" deviendra une norme lors des discussions, l'enseignant pourra approfondir ses questions davantage.

Profiter des différentes réponses

Lorsque plusieurs réponses sont données pour le même problème, prenez le temps d'exprimer votre joie! Cela veut dire qu'on pourra animer un petit débat dans lequel les élèves auront l'occasion de tenter de convaincre le reste de la classe à l'aide d'arguments mathématiques. Prenez le temps d'explorer une réponse erronée afin de permettre à l'ensemble de la classe d'apprendre de cette démarche.

Encourager l'utilisation d'un langage mathématique approprié

Réfléchir ensemble

Il faut aller plus loin que les étapes d'une démarche pour arriver à la solution. Nous devons amener les élèves à comprendre et être en mesure d'expliquer pourquoi leur procédure fait du sens. Leur demander le pourquoide leur démarche aidera les élèves à approfondir leur compréhension du problème.Éventuellement, les élèves pourront se demander ces questions entre eux. "Pourquoi as-tu fais ceci? Peux tu m'expliquer?".Au départ, il est normal que les élèves soient déstabilisés d'avoir à expliquer leur raisonnement si ils n'ont jamais eu à le faire. Il faut alors ne pas trop pousser les élèves à expliquer pourquoi lorsqu'on se rend compte qu'ils répètent seulement ce qu'ils ont mémoriser. Si les élèves utilisent, par exemple, un algorithme sans être en mesure d'expliquer pourquoi, c'est à l'enseignant de donner du sens à ces procédures et d'expliciter différentes stratégies efficaces pour calculer mentalement.

Conseils pour réussir ses causeries mathématiques

Source: Making Number Talks Matter (par Cathy Humphreys et Ruth Parker)

Retour

Les types de causeries mathématiques

Peu importe le type de causeries, l'intention est toujours de proposer un court problème et d'animer une discussion de groupe afin de faire ressortir différentes stratégies et ainsi développer la compréhension conceptuelle, la flexibilité et la fluidité des élèves tout en favorisant un climat de classe propice aux échanges.

Bévues mathématiques

Parlons Cube

Cartes à points

Retour

Activités Splach

Pareil mais différent

à venir

Ressources supplémentaires

Retour

Banque de causeries par niveau(CSSDPS)

Entrevue sur les causeries avec des enseignants(TA@L'école)

Animer une causerie sous forme de débat

L'art de questionner de façon efficace

Banque de causeries(créé par les conseillers pédagogiques du Centre de services scolaire des Premières-Seigneuries)1er cycle3e secondaire4-5e secondaire

Types de Causeries

Cartes à points

Ce type de causerie représente un bon point de départ à tout les niveaux pour instaurer un climat de classe sécurisant et favorisant la discussion.Une causerie mathématique à l'aide des cartes à points consiste à demander aux élèves de déterminer le nombre de points présenté dans l'image sans les compter 1 par un.Les élèves doivent expliquer comment ils ont déterminer le résultat et l'enseignant s'assure de bien représenter le raisonnement de l'élève.

Retour

Banque de cartes à points

Pilotage d'une causerie avec une carte à points(en anglais)

Informations sur le pilotage

TYPES DE CAUSERIES

Quel est l'intrus

QELI

Quel est l'intrus (QELI) est un type de causerie mathématique qui consiste à présenter aux élèves 4 images (équations, graphique, figures, etc). L'élève doit ensuite utiliser ses connaissances, sa logique et son raisonnement mathématique afin de déterminer, laquelle des quatre images est l'intrus et de justifier son choixCe qui est intéressant, c'est que chacune des images pourrait être considérée comme l'intrus selon la justification choisie par l'élève.

Banques de QELI

👉 La page à Dage👉 Which One Doesn't Belong👉 QELI sur des nombresVous pouvez même créer une activité Desmos à partir d'un Qeli comme dans cet exemple! Bien utile à distance!

Projet création d'un QELI

Gabarit Google Slides

Informations sur le pilotage

Retour

TYPES DE CAUSERIES

Estimation 180

Andrew Stadelnous propose des activités d’estimation. « 180 » pour 180 jours… 1 estimation par jour d’école… mais il y en a même plus que 180 !Ce site permet d’estimer des quantités, des longueurs, des capacités, le temps et bien d’autres.Par exemple, au jour 59, il nous amène à estimer des capacités – L'élève doit donc utiliser ses connaissances en lien avec le rayon et la hauteur d'un objet.

Informations sur l e pilotage

Banques

👉 https://estimation180.com/

Retour

Exemple

TYPES DE CAUSERIES

MATHS FAILS

Pour lancer ce type de causerie, on peut utiliser une ou plusieurs questions ou directives parmi celles-ci : Qu’est-ce qui cloche? Pourquoi ce n’est pas mathématiquement correct? À l’aide d’arguments convaincants, explique pourquoi c’est une erreur mathématique. Une fois l’erreur constatée et qu’un partage a été effectué dans la classe, on vise ensuite à amener des pistes pour corriger l’erreur ou pour amener les réflexions un peu plus loin. À ce moment, les questions suivantes peuvent nous aider à orienter les échanges : Comment pourrait-on corriger l’erreur? Y a-t-il différentes façons de corriger l’erreur? Trouve différentes façons de corriger l’erreur. Crois-tu que l’erreur a pu être commise intentionnellement? Explique.

Quelques exemples

Retour

Si vous souhaitez nous envoyez d'autres exemples

Cliquez ici pour nous envoyer d'autres exemples

TYPES DE CAUSERIES

TOUJOURS, Parfois, Jamais

À partir d’un énoncé généralement simple (comme les exemples ci-contre), on demande aux élèves si celui-ci est toujours vrai, parfois vrai ou jamais vrai.Peu importe la réponse de l’élève, celle-ci doit être appuyée : De plusieurs exemples variés; D’arguments mathématiques permettant d’appuyer la réponse; De démonstrations mathématiques. Voici des questions permettant d'alimenter ou de relancer la causerie avec les élèves :

Si deux rectangles ont le même périmètre, ils ont aussi la même aire.

Autres exemples en algèbre et géométrie

Retour

Autres exemples en arithmétique

Le carré d’un nombre est plus grand que ce nombre.

As-tu testé ton affirmation à l’aide de plusieurs exemples?

Combien d’exemples as-tu besoin de faire pour être en confiance avec ta réponse?

Comment peux-tu me convaincre de ton affirmation?

As-tu essayé avec de petits nombres? de grands nombres? des nombres négatifs? des fractions? des nombres décimaux?

Comment peux-tu me le prouver mathématiquement?

Est-ce que ton affirmation est une hypothèse (conjecture) ou une démonstration?

Qu’ont en commun les exemples où c’est vrai? où c’est faux?

Pour quel intervalle de nombres l’énoncé est-il vrai? est-il faux?

Peux-tu dégager une généralité dans les exemples vrais? dans les exemples faux?

Activités Splach

Amener les élèves à travailler les représentations d’un nombre et les opérations sans utiliser les algorithmes. L’idée est de travailler à partir des représentations visuelles et trouver différentes stratégies selon le principe des causeries mathématiques pour déterminer le nombre qui se cache sous le splach. Lorsqu’il y a plus d’un splach l’élève doit savoir que derrière chaque splach d’une même couleur, on retrouve le même nombre. On peut ainsi amener à travailler la division et même aller jusqu’à travailler les équations en algèbre. (Tiré du document de Marika Perrault, CP CSSDHR)

Vidéo explicative

TYPES DE CAUSERIES

Retour

Ressources classées par niveau

Parlons cube

Amener les élèves à travailler les représentations d’un nombre et les opérations sans utiliser les algorithmes. L’idée est de travailler à partir des représentations visuelles et trouver différentes stratégies selon le principe des causeries mathématiques pour déterminer le nombre de cubes que la forme contient.(Tiré du document de Marika Perrault, CP CSSDHR)

Ressources classées par niveau

TYPES DE CAUSERIES

Retour

Vidéo explicative

CALCUL MENTAL RÉFLÉCHI

Amener les élèves à travailler et partager différentes stratégies de calcul mental à partir d'images ou d'expressions mathématiques. C'est à travers ce partage que les élèves approfondiront leur compréhension de plusieurs concepts tels que le sens du nombre et des opérations, les propriétés des opérations et le sens de l'égalité. Le calcul mental pourrait aussi etre mis à profit pour d'autres thèmes mathématiques, comme la géométrie, la trigonométrie, l'algèbre et les fonctions. Des questions judicieusements choisies par l'enseignant accompagnées d'un pilotage planifié permettront d'atteindre le plein potentiel de ce type de causerie.

Informations sur le pilotage

TYPES DE CAUSERIES

Retour

Banque d'images

Le calcul mental au 2e cycle du secondaire

Les images de cette banque peuvent être utilisées pour une causerie mathématique afin de travailler les propriétés des opérationsPar exemple,(4 x 3 - 2) x 2(12 - 2) x 224 - 4 👉distributivité de la multiplication sur la soustraction202 x (4 x 3) - 2 x 2 👉associativité de la multiplication2 x 12 - 412 x 2 - 4 👉commutativité de la multiplication24 - 420

👉Le calcul mental au delà des nombres conceptualisations et illustrations avec la résolution d'équations algébriques (Jérôme Proulx, ANNALES de DIDACTIQUE et de SCIENCES COGNITIVES, volume 18, p. 61-90.© 2013, IREM de STRASBOURG)👉Exemples de problèmes de calcul mental au 2e cycle du secondaire