Want to make creations as awesome as this one?

Transcript

Illustration : Michel Saemann

Arès XVI

retour accueil

ARES XVI

Mission "Mars contaminée"

Déimos (terreur en grec) : le plus petit (15km maximum) et le plus éloigné des satellites de Mars.

Phobos (Peur en grec) : principale lune martienne dun diamètre maximal de 26km, la plus proche et la plus grande de Mars. Pas d'atmosphère.

Pression : 6,36 bars ou 600 Pascals en moyenne Masse : 25 milliards de tonnes CO2 : 95,9% Ar : 1,9% N2 : 1,9% O2 : 0,1% CO : 0,05% H2Ov : O,O3% NO : 0,01% O3 : 30ppm CH4 : 10,5ppm

Auteurs du jeu :

  • Mélanie Fenaert (Académie de Versailles) : ressources, personnages, vidéos (...)
  • Grégory Michnik (Académie de Lille) : charte graphique, navigation, guide pédagogique, scénario (...)
Images :
  • NASA
  • Michel Saemann (illustrations scientifiques) : http://www.3dmiche-illustrations.com
  • Adrien Girod (concept artist, designer, illustrator) avec son aimable et gracieuse autorisation

Même si les vents sur Mars sont plus faibles que sur Terre, ils sont suffisants pour faire tourner des petites éoliennes. Vitesse du vent sur Mars : de 2 à 10 km/h par temps calme, de 17 à 30 km/h pendant une tempête.

Cette foreuse permet de creuser à plusieurs mètres de profondeur dans le régolithe martien.

Engin roulant pressurisé électrique ayant une autonomie d'environ 150 km.

Les paraboles sont le seul moyen pour communiquer avec la Terre. Il faut environ 20 minutes pour qu'un message arrive à destination.

"Hmmm, ça ressemble à un chocolat praliné en forme de coquillage... euh, oui Jack, une mission très intéressante ! Allons au labo et penchons-nous sur ces données !"

"Un défi comme je les aime ! T'en penses quoi Myriam ?"

Des sacs de sables martiens de 30 cm placés autour ou sur le toit couperaient la moitié de la dose de radiations reçue. La dose reçue tomberait à 0,08 Sv /an.

Positionnement stratégique de la base : au pied d'une falaise, face à la moitié de la voûte céleste : la dose de rayons cosmiques reçue passe à 1/4 de la dose initiale.

Accès au dossier personnel

Accès au dossier personnel

CENTRE DE COMMANDEMENT

base

"Allo Gaïa, ici Myriam Holekull, biochimiste d'Arès XVI. Je demande l'autorisation d'entrer en communication avec un collègue exobiologiste de votre base terrestre, Tristan Dequaire, s'il vous plaît."

"OK Jack, je l'ai vu récemment en salle de sport. En attendant, je compulse les ressources sur la fossilisation, histoire de me rafraîchir la mémoire... Si besoin je contacterai un ami sur Terre via la salle de commandement, c'est un spécialiste en exobiologie."

"OK Jack, je l'ai vu récemment en salle de sport. En attendant, je compulse les ressources sur la fossilisation, histoire de me rafraîchir la mémoire... Si besoin je contacterai un ami sur Terre via la salle de commandement, c'est un spécialiste en exobiologie."

Accès au Dossier personnel

Accès au Dossier personnel

Accès au Dossier personnel

Accès au Dossier personnel

Accès au dossier personnel

CHAMBRES & SALLE DE BAIN

base

"Salut les gars, Fabriz je voulais te voir pour avoir des idées concernant la protection anti vent solaire..."

"Bon sang, on n'est jamais tranquille ici, une vraie prison... OK, allons à l'aérogare, je t'expliquerai là-bas."

"Hmmm, une bonne douche tiède, du gel dans les cheveux, le bonheur !"

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

SALLE COMMUNE

base

" Mais avoir un risque accru d'un cancer est problématique pour un jeune, mais beaucoup moins pour un senior, pour lequel le risque statistique de décès peut se réaliser à un âge... où il est déjà mort d'autre chose !"

" Dans le calcul des risques médicaux, homme et femme n'ont pas le même risque. On recommande une moindre exposition aux radiations pour les femmes."

"Ont été établies des doses recommandées à ne pas dépasser selon son âge, son sexe !"

" D'où la dose de radiations plus grande autorisée pour un astronaute sénior !"

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

BASSIN D'AQUACULTURE & BIODÔME

base

Sol martien Ce sol artificiel est en cours de transformation pour pouvoir y planter des végétaux. La matière de base est le régolite martien, pauvres en éléments indispensables à la croissance des plantes. Sa composition est proche du sol volcanique hawaïen.

Végétaux terrestres Ces végétaux ont été cultivés in vitro puis dans la serre sous un contrôle rigoureux (luminosité, apport d'eau, engrais). Ils sont pour l'instant en pot dans le biodôme, en attendant que le sol martien soit prêt.

"Ah mes chers petits poissons, voici votre ration nutritive quotidienne ! Juste un peu de compléments alimentaires à base de micro-algues, pour vous apporter quelques vitamines, lipides et protéines... heureusement, vous êtes quasiment autonomes dans ces bassins : vous y recyclez la matière organique végétale pour créer votre propre matière organique, car vous êtes hétérotrophes pour le carbone !"

Bassin de culture et d'élevage Ce bassin permet de cultiver des algues permettant de complémenter le régime alimentaire des Marsonautes. Des Tilapias y sont élevés. Le Tilapia est un poisson d'eau douce de la famille des Cichlidae, facile à élever et dont les déjections sont recyclées en engrais pour la serre. Le niveau d'eau du bassin est normal.

Biodôme Le biodôme est une structure hermétiquement isolée du reste de la base. Un écosystème y sera réalisé. À terme, cet écosystème sera complètement autonome : un cycle de l'eau y existe, ainsi qu'un cycle du carbone et de l'oxygène.

Accès au dossier personnel

SALLE DE SPORT

base

"En raccourcissant le temps de vol, on peut envisager de diminuer le risque des radiations ! Brulons plus de propergol et le voyage ne durerait que 3 mois !"

Accès au dossier personnel

Centre technique

base

"On cherche à développer de nouveaux matériaux anti radiations, notamment à base d'hydrogène : cet élément chimique arrête protons et neutrons avec une efficacité maximale.

"Construisons une paroi dopée en hydrogène ! Il stoppe les rayons cosmiques et les protons solaires avec une efficacité respectivement 15 % et 50 % supérieure à celle de l'aluminium pour un poids deux fois moindre. "

"Pourquoi pas le nitrure de bore pour les scaphandres ?"

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

base

Pôle sud de Mars Source : ESA

http://www.astrosurf.com/luxorion/sysol-mars.htm Compendium du système solaire - Mars Compendium du système solaire - Mars Astrosurf

http://www.insu.cnrs.fr/node/6026 Mars : des rivières souterraines récemment activesDeux chercheurs du laboratoire GEOPS (CNRS/Université Paris Sud), en collaboration avec deux autres planétologues américain et canadien, viennent de mettre en évidence un réseau probable de rivières sINSU Cliquez sur lien pour accéder à l'article complet

https://fr.wikipedia.org/wiki/Valles_Marineris Valles Marineris - Wikipédia Valles Marineris ( latin signifiant " les vallées de Mariner ", en l'honneur de ) est un vaste système de canyons situé à proximité de l' équateur de la planète Mars entre le renflement de Tharsis - notamment Syria Planum et Noctis Labyrinthus - à l'ouest, et Margaritifer Terra à l'est, dans les quadrangles de Phoenicis Lacus, de Coprates et de Margaritifer Sinus. Wikipedia

https://fr.wikipedia.org/wiki/Mawrth_Vallis Mawrth Vallis - Wikipédia Mawrth Vallis est l'un des plus anciens lits de cours d'eau martiens, présentant des sédiments stratifés riches en argiles, qui donnent une teinte claire aux terrains des environs. L'abondance et la complexité des dépôts de phyllosilicates , ainsi que la découverte de jarosite constituent autant d'indices de la longue histoire hydrologique de la région. Wikipedia

https://fr.wikipedia.org/wiki/Argyre_Planitia Argyre Planitia - Wikipédia Argyre Planitia est un bassin d'impact de 800 km de diamètre et 5 200 m de profondeur situé dans l'hémisphère sud de la planète Mars et centré par 49,7° S et 316,0° E dans le quadrangle d'Argyre, entre Solis Planum et Bosporos Planum au nord-ouest, Noachis Terra à l'est, et Aonia Terra au sud-ouest. Wikipedia

Cliquez pour accéder à l'article (+ vidéo en bas de page) : Curiosity observe un ancien lac sur MarsL'avènement de l'astronautique au cours des années 1960 a permis de poser les bases d'une planétologie comparée. Les météorologistes et les géologues ont ainsi vu leurs terrains de jeux favoris s'étendre aux autres planètes du Système solaire, particulièrement sur Mars. C'est en effet un géologue, John P.Futura

Arès X est située dans le cratère Jezero. https://fr.wikipedia.org/wiki/Jezero_(crat%C3%A8re_martien) Jezero (cratère martien) - Wikipédia Jezero est un cratère d'impact de 49 kilomètres de diamètre situé sur Mars dans le quadrangle de Syrtis Major par 18,2° N et 77,6° E en bordure occidentale d' Isidis Planitia. Wikipedia

Nuages de glace d'eau dans la région de Tharsis Crédits : NASA (domaine public)

Australe Chasma fut l'objectif de la mission "Expédition polaire" effectuée par des drones et rovers téléguidés depuis Arès XVI en 2074. https://en.wikipedia.org/wiki/Planum_Australe Planum Australe - Wikipedia Planum Australe is partially covered by a permanent polar ice cap composed of frozen water and carbon dioxide about 3 km thick. A seasonal ice cap forms on top of the permanent one during the Martian winter, extending from 60°S southwards. It is, at the height of winter, approximately 1 meter thick. Wikipedia

http://www.futura-sciences.com/magazines/espace/infos/actu/d/systeme-solaire-traces-rivieres-geantes-mars-64056/#xtor=AL-30-1[ACTU]-64056[Des-traces-de-rivieres-geantes-sur-Mars] Des traces de rivières géantes sur Mars Une équipe de chercheurs ayant identifié un vaste réseau de rivières fossilisées sur Mars défend l'hypothèse que la Planète rouge a été, il y a un peu moins de 4 milliards d'années, un peu plus bleue, car plus chaude et humide. Futura

https://fr.wikipedia.org/wiki/Ascraeus_Mons Ascraeus Mons - Wikipédia Ascraeus Mons est un volcan bouclier situé sur la planète Mars par 11,8° N et 255,5° E , dans le quadrangle de Tharsis. Large de , il culmine à en moyenne au-dessus du renflement de Tharsis et à d'altitude au-dessus du niveau de référence martien, ce qui en fait le second sommet de Mars. Wikipedia

En plein cœur de Valles Marineris, la gigantesque faille qui balafre la planète rouge sur plus de 4000 km de long, la région de Melas Chasma est une des dépressions les plus profondes qu’il est possible d’observer sur Mars. https://cnes.fr/fr/1-loeil-du-satellite/mars-dans-les-profondeurs-de-melas-chasma Mars : dans les profondeurs de Melas Chasma Le CNES accorde à l'utilisateur un droit personnel, gratuit, non exclusif et non transférable d'accès et d'utilisation de son site Internet. Tout autre droit est expressément exclu. Cnes

HiRISE | Clay Diversity on Flank of Mawrth Vallis (ESP_017897_2045) Uahirise

https://fr.wikipedia.org/wiki/Olympus_Mons Olympus Mons - Wikipédia 21 229 Olympus Mons , nom latin pour " mont Olympe ", est un volcan bouclier de la planète Mars situé par 18,4° N et 226° E , dans les quadrangles d'Amazonis et de Tharsis. Wikipedia

PHYTOREACTEUR

Les algues et bactéries chlorophylliennes importées de la Terre et cultivées dans ces bassins sont utiles pour produire de l'O2 et du biocarburant.

base

Lumière Eclairage artificiel puissant et fournissant une lumière blanche

Apport en dioxyde de carbone Ces canalisations alimentent les algues en CO2. Le CO2 provient de l'atmosphère martienne. Il doit être filtré et réchauffé.

Photobioréacteur : tubes de culture Les micro-algues sont cultivées dans ces tubes. Quand les algues ce sont suffisamment reproduites, les tubes sont vidangés et une nouvelle culture est lancée. Les algues récupérées sont la matière première pour produire du biocarburant. En effet, en présence d'une lumière de bonne qualité et alimentées en dioxyde de carbone (CO2), les algues réalisent la photosynthèse : elles transforment le CO2 en matière organiques (glucides). Ces glucides sont ensuite transformés en d'autres types de molécules organiques dont les lipides. Ces lipides sont précieux pour produire du biocarburant. La photosynthèse s'accompagne du rejet d'un déchet : le dioxygène (O2), une molécule indispensable à la respiration et à la combustion des biocarburants.

Récupération du dioxygène Le dioxygène produit par la photosynthèse des algues est récolté et évacué par cette canalisation pour être stocké sous pression.

Apport d'eau Les algues unicellulaires sont des organismes nécessitant beaucoup d'eau. L'eau est aussi un élément indispensable à la photosynthèse. Les algues doivent baigner dans de l'eau enrichie en éléments minéraux (NPK), ce qui en fait un milieu de culture

Extraction et raffinage Les algues récoltées sont centrifugées. 80% de l'eau récoltée est réinjectée dans le photobioréacteur. Les algues sont broyées par des microbilles. Les huiles végétales sont récupérées grâce à un solvant qui est recyclé. Elles sont ensuite raffinées en biodiesel. Les autres molécules organiques (résidus de biomasse) sont utilisées pour réaliser d'autres produits (pigments, protéines, bioplastique).

"Mes micro-algues sont des êtres vivants extraordinaires ! Comme tous les végétaux terrestres, elles sont capables de créer leur propre matière organique carbonée à partir de matière minérale et d'énergie lumineuse : elles sont autotrophes pour le carbone. Elles utilisent pour cela la photosynthèse."

Accès au dossier personnel

LABORATOIRES SCIENTIFIQUES

Biologie-Géologie

Chimie-Biochimie

Sciences physiques

base

Matériels disponibles :

  • lampe à UV
  • suspension de levures (1g/L)
  • boites de pétri avec milieu de culture gélosé stérile,
  • cache, ensemenceur (pinceau)
  • Logiciel mesurim pour compter le nombre de colonie

On peut facilement cultiver des levures de l’espèce Saccharomyces cerevisiae*, de couleur blanc-crème. Les levures sont hétérotrophes, c’est-à-dire qu’elles ont besoin d’un milieu nutritif pour se développer. On les met en culture dans des boîtes de Pétri, sur un gel solide contenant des nutriments. Lors de l’étalement, on répartit les levures sur toute la surface de la gélose. Ensuite, on les laisse se développer une semaine à température ambiante : chaque levure unique donne une colonie.

""Élaborons un protocole expérimental permettant de mettre en évidence l’effet de mutations sur le métabolisme cellulaire des levures."

"OK , prenons des précautions sanitaires pour éviter de contaminer la base."

Accès au dossier personnel

Accès au dossier personnel

Faire pousser des plantes sur Mars (Futura-sciences)

http://www.futura-sciences.com/magazines/espace/infos/actu/d/exploration-martienne-mars-colons-pourront-faire-pousser-plantes-53357/ Sur Mars, les colons pourront faire pousser des plantes L'exploration de Mars fait rêver les amateurs de science-fiction depuis longtemps. Nourries par les romans d'Arthur Clarke ou de Ray Bradbury, plusieurs sont prêts à embarquer dans le projet de colonisation de la Planète rouge baptisé Mars One. Mais pour que ce projet réussisse, il faudrait que les colons puissent produire leur nourriture sur place. Futura-Sciences

SERRES & LABO AGRONOMIE

How to grow plants on Mars (NASA)

https://www.nasa.gov/mission_pages/station/research/news/meals_ready_to_eat Crew Members Sample Leafy Greens Grown on Space Station Fresh food grown in the microgravity environment of space is officially on the menu for the first time for NASA astronauts on the International Space Station. NASA

Perchlorates

Courte vidéo en anglais, les sous-titres en français sont plutôt bien faits (activer les sous-titres, puis choisir le français). Le début est toutefois mal traduit : "Le perchlorate est une substance très cool, c'est un sel, ceci un perchlorate de calcium. On peut le trouver partout sur Mars..." https://www.youtube.com/watch?v=fxnEKi7ItW4

Perchlorates

Courte vidéo en anglais, les sous-titres en français sont plutôt bien faits (activer les sous-titres, puis choisir le français). Le début est toutefois mal traduit : "Le perchlorate est une substance très cool, c'est un sel, ceci un perchlorate de calcium. On peut le trouver partout sur Mars..." https://www.youtube.com/watch?v=fxnEKi7ItW4

base

base

base

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Le laboratoire contient de nombreux échantillons de sols terrestres et martiens. © Cirad, T. Erwin

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Le laboratoire contient de nombreux échantillons de sols terrestres et martiens.

Welcome to Mars (Buzz Aldrin, National Geographic kids)

"Matoussa, tu me passes l'engrais biologique s'il te plaît ? Nos cultures n'ont pas l'air au mieux de leur forme..."

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Matt Damon dans Seul sur Mars (Ridley Scott)

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 5 : Bactéries vertes sur planète rougeLe lundi 21 septembre 2015« J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. [...] » J’ai déjà mentionné qu’une partie de mes travaux visait à mettre au point un système permettant de produire des ressources sur Mars à partir des matériaux présents sur place. Comme vous pouvez vous en douter, les plantes jouent un rôle dans ce projet. Mais le rôle principal est tenu par les cyanobactéries. Ces micro-organismes sont des bactéries vertes qui, comme les plantes, font de la photosynthèse. Bien que peu connues du public, en tout cas dans ce contexte, elles pourraient devenir des éléments clés d’un avant-poste sur Mars. Je vais essayer d’expliquer leur potentiel d’une façon accessible au large public. Si mes écrits sont trop difficiles à comprendre (un écueil classique lorsque l’on vulgarise sa propre recherche), n’hésitez pas à me le faire savoir ! Si au contraire ce que j’écris est trop basique et que vous voulez plus de détails techniques, je vous invite à lire lapublication dont cet article est tiré. Déposer des hommes sur Mars dans les prochaines décennies est maintenant un objectif réaliste. Mais si planter un drapeau et laisser une empreinte pourrait être fait avec pas grand-chose de plus que nos capacités technologiques actuelles, l’investissement est discutable. En revanche, si une intense activité scientifique est possible, les dépenses sont largement justifiées. Dans ce cas, une équipe devra passer un temps considérable sur place. Multiplier des missions à court terme n’est en effet pas une option viable : étant donnés le temps, les coûts et les difficultés associés au trajet, des bases permettant des séjours de longue durée seront probablement nécessaires. Mais si l’idée d’une présence humaine permanente est attirante, procurer les denrées nécessaires à la survie des pionniers reste un défi : les coûts de lancement ne permettent pas le ravitaillement continu d’une colonie au-delà de la Lune. Envoyer toutes les ressources nécessaires à partir de la Terre est financièrement irréaliste. La colonisation de Mars est-elle donc trop onéreuse pour être réalisable ? Peut-être pas… si l’on peut n’envoyer qu’une quantité minimale de consommables et produire le reste à partir de matériaux trouvés sur place. Les systèmes biologiques, et les micro-organismes en particulier, seront extrêmement utiles. L’être humain utilise leurs produits depuis le début de son histoire : oxygène produit par des micro-algues, aliments et boissons tels que micro-organismes comestibles et produits fermentés comme le vin et le fromage, médicaments, divers produits chimiques, biomatériaux, biocarburants, etc. Nous dépendons également d’eux pour divers procédés, par exemple le recyclage de déchets et l’extraction de certains métaux. Les micro-organismes peuvent par ailleurs se démultiplier très rapidement à partir de quantités infimes ; en envoyer quelques milligrammes suffirait donc pour en lancer des cultures sur Mars, dans des systèmes de culture clos. Mais comment les alimenter ? S’il faut envoyer des milieux nutritifs depuis la Terre le problème de la masse est déplacé, pas résolu. Heureusement, tous les éléments de base nécessaires à la vie ont été détectés sur Mars. Les nutriments métaux sont présents dans les roches. Il y a du carbone (sous forme de dioxyde de carbone et, en quantités a priori bien moindres, de méthane) de l’azote dans l’atmosphère, et des atomes de carbone supplémentaires sont présents dans la glace carbonique des calottes glaciaires et sous la surface du régolithe (le sol poudreux visible sur les images de paysages Martiens) du fait d’échanges avec l’atmosphère. De grandes quantités d’eau ont été détectées sous forme de glace dans la calotte polaire nord, sous la glace carbonique de la calotte glaciaire sud et proche de la surface à des latitudes plus tempérées, sous forme d’hydratation des minéraux, et sous forme de vapeur dans l’atmosphère. Ce sera par ailleurs un produit secondaire du métabolisme et de l’activité industrielle humains. L’énergie solaire est également présente, avec une intensité moyenne de 43% celle de la Terre. Le problème ? Une large part de ces éléments est sous une forme que la plupart des organismes ne peuvent utiliser. En particulier, beaucoup (qualifiés d’hétérotrophes et incluant les animaux tels que les hommes, ainsi que la majorité des micro-organismes) ont besoin de composés organiques comme sources de carbone et d’énergie, et la disponibilité de ceux-ci sur Mars est mal connue mais très probablement basse. De l’azote fixé, par exemple des nitrates, de l’ammoniac ou des acides aminés (mais pas l’azote atmosphérique qui est sous forme de diazote, N2) et du dioxygène (O2) sont également nécessaires à la plupart des organismes. Et, finalement, les éléments métaux enfermés dans les roches sont généralement inaccessibles. Le problème n’est donc pas un manque d’éléments basiques nécessaires à la vie, mais la capacité des organismes à les utiliser sous la forme qu’ils prennent à la surface de Mars. Deux exemples de cyanobactéries, d'espèces différentes, vues au microscope. La photographie rend mal leur couleur, d'un vert intense. © Cyprien Verseux Mais tous les organismes n’ont pas besoin de composés organiques : ce n’est pas le cas des cyanobactéries, par exemple. Elles peuvent, comme les plantes, faire de la photosynthèse : utiliser du dioxyde de carbone, de l’eau et de la lumière pour produire leurs propres composés organiques. Dans un désert nutritif comme Mars, cela leur donnerait un fort avantage sur les organismes hétérotrophes. Certaines espèces peuvent fixer le diazote qui, comme le dioxyde de carbone, est présent dans l’atmosphère de Mars. De plus, certaines ont la capacité d’extraire et d’utiliser les métaux présents dans des analogues de roches martiennes. La plupart – voire tous – les nutriments qui leur sont nécessaires pourraient donc être fournis directement à partir de ressources présentes sur Mars. Et puisque les cyanobactéries produisent des composés organiques, fixent l’azote et extraient des nutriments métaux des roches, pourquoi ne pas s’en servir pour nourrir des organismes hétérotrophes ? Cultiver des organismes vivants en utilisant des cyanobactéries pour transformer des ressources martiennes en milieux de culture. © Cyprien Verseux Les cyanobactéries pourraient par ailleurs être utilisées directement pour diverses applications comme la production de nourriture, de carburants et d’oxygène. Qu’en est-il des plantes ? Bien que le basalte soit la roche dominante dans le régolithe martien, et qu’une fois érodé il contribue à la formation de sols extrêmement productifs sur Terre, le sol martien devra probablement subir un traitement physicochimique et/ou biologique avant de pouvoir être utilisé comme milieu de croissance pour des plantes. Les raisons pour cela incluent sa basse capacité à retenir l’eau (à cause de l’absence de carbone organique), et le fait que ses nutriments soient peu accessibles aux racines. En plus du carbone et de nutriments métaux, le sol devra être enrichi avec d’autres éléments. De l’azote utilisable, notamment : la plupart des plantes sont incapables de fixer l’azote atmosphérique (même si certaines, principalement des légumineuses, portent des bactéries symbiotiques qui le fixent pour eux). Les plantes sont par ailleurs bien moins efficaces que les cyanobactéries en ce qui concerne l’utilisation de surface, de dioxyde de carbone et de minéraux. Elles sont plus sensibles aux conditions environnementales, nécessitent plus de main d’œuvre, se prêtent moins à l’ingénierie génétique, prennent plus de temps à redéployer en cas de perte, nécessitent une logistique plus complexe et contiennent des parties non comestibles et difficiles à recycler. Les rôles principaux des plantes dans un avant-poste humain seraient la production de nourriture et d’oxygène, qui peuvent être assurés par les cyanobactéries. Cela dit, bien que certaines cyanobactéries comestibles aient d’excellentes propriétés nutritives (déjà entendu parler de la spiruline ?), elles ne peuvent actuellement pas être utilisées comme nourriture de base à cause de leur goût que peu qualifieraient d’agréable, de leur manque de vitamine C et peut-être de certain lipides essentiels, et de leur bas ratio glucides/protéines. Ces problèmes pourraient être résolus par l’ingénierie génétique, mais les plantes ont d’autres avantages : elles permettraient la production d’aliments réconfortants et leur culture pourrait avoir un impact positif sur le moral des colons. Des cultures à petite échelles, alimentées par des nutriments produits par des cyanobactéries et par les déchets organiques produits par l’équipage, peuvent être envisagées. En résumé : grâce à la photosynthèse, à l’érosion de roches et à la fixation d’azote, les cyanobactéries pourraient être cultivées sur Mars et utilisées pour transformer la matière inorganique locale en composés disponible à d’autres microorganismes et aux plantes. Des nutriments supplémentaires proviendraient du recyclage de déchets de l’équipage. Finalement, si d’autres micronutriments (par exemples, certains cofacteurs) se révèlent impossibles à extraire sur place, les transporter depuis la Terre n’ajouterait qu’une masse négligeable à la charge du vaisseau, puisqu’ils ne sont nécessaires qu’en quantités infimes. Les pionniers pourraient donc transporter de très légers tubes contenant des cyanobactéries et, une fois atterris sur Mars, les cultiver à partir de matériaux trouvés sur place. Ces bactéries photosynthétiques seraient ensuite utilisables pour cultiver d’autres micro-organismes et des plantes, recréant ainsi un écosystème simple et capable de produire les denrées nécessaires à la colonie à partir de ressources locales. C’est l’objet principal de mes recherches. Cyprien Verseux

Le laboratoire contient de nombreux échantillons de sols terrestres et martiens. © Cirad, T. Erwin

"Nous devrions poursuivre nos recherches pour améliorer la composition de notre sol artificiel. Le recyclage de la matière organique usagée de la base, comme les restes alimentaires et les excréments via le compostage, n'est pas assez efficace pour former un sol suffisamment riche en humus et en matière minérale. Il faudra qu'on en parle avec Angelo..."

Accès au dossier personnel

Accès au dossier personnel

États de l'eau en fonction de la pression et de la température

Economiser l'eau

Eau = vie ? (CNES)

Réservoir d'eau principal

base

La température à l'intérieur du dôme est de 18°C, la pression est maintenue à 1 kPa.

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 7 : Une machine en forme de dômeLe mercredi 30 septembre 2015« Notre habitat est plus qu’une simple coupole blanche : c’est un environnement hautement contrôlé et surveillé. [...] » Notre habitat est plus qu’une simple coupole blanche : c’est un environnement hautement contrôlé et surveillé. Vu de l’extérieur, c’est un dôme blanc posé à 2,5 km sur les flancs d’un volcan et entouré de roches rougeâtres à perte de vue. Un container en forme de brique, que nous appelons le Sea Can, y est connecté. Schéma de l'habitat HI-SEAS, vu du dessus. © Envision Design LLC A une dizaine de mètre du dôme se trouvent des réservoirs d’eau d’une capacité totale d’un peu plus de 3500 litres. Comme le système issu du projet de recherche de Christiane (conçu pour récupérer les eaux d’hydratation des minéraux que l’on trouve dans le sol martien) est encore un prototype, ce réservoir est rempli par une société extérieure quand nous en avons besoin. Lorsque qu’un ravitaillement est imminent, nous mettons des caches sur nos hublots et des casques sur nos oreilles pour ne pas sentir la présence de personnes extérieures. Nous n’avons eu notre premier remplissage qu’après trois semaines, et il nous restait encore de l’eau. Si nous avons tenu si longtemps, c'est parce que nous sommes très attentifs à notre consommation d’eau. Nous prenons des douches d’une minute 30 tous les trois jours, faisons notre lessive dans un seau quand nous le pouvons et, pour la vaisselle, nous n’utilisons qu’un peu d’eau, changée de temps en temps, au fond d’un bac. Les eaux sales sont collectées et utilisées pour nettoyer le sol. Un petit surplus d’eau est collecté via le prototype de Christiane. Une partie de l’eau, essentiellement utilisée pour se doucher, est chauffée par un chauffe-eau solaire sur le toit duSea Can. L’eau chaude met plus d’une minute à atteindre la douche, et la première personne à se laver prend en général une douche froide. Lorsque l’eau est trop sale pour toute utilisation, elle est envoyée dans un réservoir. Là, les particules (morceaux de nourriture, saletés, …) sédimentent au fond. Le réservoir contient déjà de l’eau dont le niveau atteint le dessous d’un tuyau qui sort perpendiculairement du réservoir. Quand de l’eau sale arrive dans le réservoir, le niveau monte et le surplus s’écoule par le tuyau jusqu’à une zone située hors du dôme où elle s’évapore. Une bâche placée sous une couche de roches poreuses permet de collecter ce qu’il reste des déchets solides. Peut-être avez vous remarqué que je n’ai pas mentionné les toilettes dans le système de gestion de l’eau. C’est parce qu’elles n’y sont pas connectées : nos deux WC sont des toilettes sèches. Nos déchets métaboliques tombent dans un tambour qui contient de la sciure de bois (dont le rôle est d’absorber les liquides, atténuer les odeurs et faciliter le processus de décomposition) où ils rencontrent une armée de microbes impatients de s’en régaler. Ces micro-organismes sont aérobies – ils ont besoin d’oxygène – et nous devons faire tourner le tambour de temps en temps. Si nous ne le faisions pas le tambour deviendrait le royaume de microbes anaérobies, qui se régaleraient de nos fèces mais d’une manière plus odorante. Souvenez-vous que nous ne pouvons pas ouvrir les fenêtres. Toutes les trois semaines le fût doit être vidé, ce que nous avons fait hier. Ce n’est pas la partie la plus glamour de la mission, mais si tout se passe bien nous récupérons un compost presque inodore. Entre nous : tout ne se passe pas bien. Les coéquipières Carmel et Shey, prêtes à vider les toilettes. © Christiane Heinicke. (...) Cyprien Verseux Pour retrouver tous les posts de Cyprien Verseux, cliquez ici.

ENERGIE

base

"Ah Jean, enfin je te trouve ! J'aimerais savoir ce qu'il en est de l'opération de maintenance du rover Serendipity, j'ai des données de sa ChemCam à analyser... Sont-elles fiables ?"

"Salut Jack ! En effet Serendipity a été en révision récemment, enfin pour ma partie c'était plus de la maintenance mécanique. Si tu veux savoir si la ChemCam est en bon état de fonctionnement, demande plutôt à Fabriz Kohl. Il est retourné dans ses quartiers il y a une heure, il ne se sentait pas très bien."

Cyprien Verseux, l'astrobiologiste français diplômé de Sup'Biotech, vient de terminer son séjour sur Mars... à Hawaï. Avec ses cinq coéquipiers, il a participé à une expérience consistant à simuler pendant 365 jours ce que pourrait être la vie sur Mars. Le dimanche 28 août 2016, tous ont retrouvé l'air libre et sont sortis du dôme de 140 m2 à l'intérieur duquel ils ont vécu pendant cette « année martienne ». Durant cette année, il a partagé son expérience sur un blog sur le site de La Recherche, dont voici un extrait.Post 7 : Une machine en forme de dômeLe mercredi 30 septembre 2015« Notre habitat est plus qu’une simple coupole blanche : c’est un environnement hautement contrôlé et surveillé. [...] » Notre habitat est plus qu’une simple coupole blanche : c’est un environnement hautement contrôlé et surveillé. Vu de l’extérieur, c’est un dôme blanc posé à 2,5 km sur les flancs d’un volcan et entouré de roches rougeâtres à perte de vue. Un container en forme de brique, que nous appelons le Sea Can, y est connecté. Schéma de l'habitat HI-SEAS, vu du dessus. © Envision Design LLC (...) De l’autre côté du dôme se trouve un générateur photovoltaïque constitué de 36 panneaux solaires d’environ 1,7 mètres carrés chacun. En théorie ce générateur peut produire jusqu’à 10 kW, mais an pratique nous en tirons rarement plus de 5 kW et la plupart du temps bien moins. Nous sommes dépendants des heures d’ensoleillement et de la météo. L’électricité produite par les panneaux solaires est stockée dans des batteries situées dans le Sea Can et qui peuvent engranger un peu moins de 20 kWh. Lorsque la météo est favorable, elles sont généralement pleines en début d’après-midi ; c’est à ce moment-là que nous essayons d’accomplir un maximum de tâches énergivores (courir sur le tapis de course, utiliser la machine à laver plutôt qu’un seau, cuisiner, …). Toute électricité produite au-delà de ce point est perdue. Le reste du temps, nous l‘économisons au maximum. Quand nous sommes à court d’énergie produite par les cellules solaires, nous commençons à utiliser des piles à dihydrogène situées près de l’entrée du dôme. Le dihydrogène est fabriqué en séparant par électrolyse l’eau (H20) en oxygène (O2) et dihydrogène (H2) ; une opération qui serait possible sur Mars à partir d’eau récupérée sur place. Notez que les cyanobactéries pourraient aussi y être utilisées pour fabriquer du dihydrogène. Pour l’instant, nous n’avons que rarement eu besoin de ce système de secours parce que nous surveillons de très près notre consommation électrique. L’inconvénient est que le dôme est relativement froid et sombre la plupart du temps. Dans le cas où nous serions à court d’hydrogène, nous pourrions nous tourner vers un groupe électrogène à essence situé près des panneaux solaires. Sur Mars, tomber en panne d’énergie, même pour une courte durée, aurait des conséquences désastreuses : les équipements de survie reposent dessus. Ici, la punition ne serait pas aussi dramatique mais est néanmoins redoutée. Nous ne voulons pas que les ventilateurs des toilettes tombent en panne. Oh non. (...) Cyprien Verseux Pour retrouver tous les posts de Cyprien Verseux, cliquez ici.

Accès au dossier personnel

Accès au dossier personnel

CENTRE MEDICAL

Mars la verte

Mars la verte

base

"En 180 jours de trajet, la dose de radiation reçue n'est que de 0,6 Sv. Attention, le thé est très chaud !"

"De manière globale, nos patients se sont bien remis du voyage spatial Terre -Mars. La dose de radiation spatiales reçues a été distillée sur plusieurs jours. A Hiroshima, c'était une dose instantanée. La différence est de taille. Je ne suis pas inquiet."

" Les particules qui impactent les cellules vivantes ionisent certaines de leurs molécules, les transformant en oxydants et autres toxines qui les empoisonnent. Si la dose est forte et instantanée, on obtient des troubles médicaux. Si la même dose est distillée peu à peu, les cellules ont le temps d'expulser les toxines au fur et à mesure de leur apparition."

"De même pour les dommages infligés à l'ADN : une forte dose instantanée peut modifier les gènes et dérégler le fonctionnement de la cellule, pouvant éventuellement la rendre cancéreuse. Mais pour une dose étalée dans le temps, les protéines ou "agents d’entretien" de l'ADN dont le temps de réparer les dommages ! Délicieux ce thé, Djamal !"

"Bien chers collègues, il est l'heure de notre petite réunion hebdomadaire. Un vent solaire est proche, cernons les risques médicaux des habitants de la base, pendant que Djamal nous sert son fameux thé..."

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

LES MARSONAUTES

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au Dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au Dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au Dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Accès au dossier personnel

Picture by 600v

SALLE DE VIE COMMUNE - Cuisines

BASE

"Alors, aujourd'hui... fajitas reconstituées farcies au tofu et à la tomate en conserve, accompagnées de leurs frites sauce wasabi. C'est parti !"

Accès au dossier personnel

Source image ttps://www.space.com/34657-mars-national-geographic-channel-miniseries-photos.html#

BASE

Importance du bouclier magnétique terrestre

La paroi est constituée de 12cm d'épaisseur d’aluminium ou 30 cm d'eau qui peut servir comme réservoir ! Il faut une épaisseur de 1m d'aluminium pour réduire la dose de rayons cosmiques d'un facteur 10. C'est le seul endroit qui est blindé comme ceci sinon la masse serait excessive !

Les marsonautes y dorment la moitié du temps, de sorte que leur dose de rayons cosmiques est diminuée de 25 %.

Mesurer les risques On mesure les radiations d'après l'énergie transmises à leur cible, l'unité officielle étant le gray (1joule d'énergie frappant 1kg). Pour mieux introduire la notion de dangerosité pour l'être humain, on rajoute des facteurs correcteurs qui prennent en compte la nature des particules et la résistance des tissus à leur encontre, pour obtenir un nombre qui s'exprime en sieverts (Sv). Une dose inférieure à 0,75 Sv est considérée bénigne., le survient chez 5% pour cette dose et chez 50 % des sujets à partir de 2 Sv. Grâce à l'instrument RAD du rover Curiosity, nous avons une mesure exacte des radiations pour un vol aller de 180 jours, 600 jours sur place et vol retour de 180 jours. La moyenne acceptée pour une carrière d'astronaute est de l'ordre d'un Sievert.

BASE

Tunnel reliant les différents zone de la base : les radiations sont quasi nulles.